
OpenL Tablets BRMS Installation Guide

Preface
OpenL Tablets is a Business Rules Management System (BRMS) based on tables presented in the Microsoft
Excel documents. Using unique concepts, OpenL Tablets facilitates treating business documents containing
business logic specifications as an executable source code.

OpenL Tablets provides a set of tools addressing the BRMS related capabilities including OpenL Studio that
can be used for creating, testing, and managing business rules and business rule projects, and OpenL Rule
Services designed for integration of business rules into customer applications.

The OpenL Tablets Installation Guide provides instructions for installing and customizing OpenL Tablets
software. The document describes how to install OpenL Tablets under Apache Tomcat, deploy, and set up
OpenL Rule Services.

All installation and configuration can be done in the application.properties file. For an example of this
file with all properties described, see http://localhost:8080/webstudio/web/config/application.properties or
access it at the index page of the installed Open Studio.

Accessing the application.properties file example

This section includes the following topics:

How This Guide Is Organized
Audience
Related Information
Typographic Conventions

How This Guide Is Organized
1 / 47

http://localhost:8080/webstudio/web/config/application.properties

Section Description

Before You Begin
Lists system requirements for installing and using OpenL Tablets
software.

Install OpenL Studio
under Apache Tomcat

Explains how to install OpenL Studio under Apache Tomcat.

Deploy OpenL Rule Services
under Apache Tomcat

Designed for rule developers who need to use business rules as
separate web services.

Install OpenL Studio and OpenL
Tablets Rule Services on JBoss
Application Server

Explains how to install OpenL Studio and OpenL Rule Services on
JBoss Application Server.

OpenL Studio and
Rule Services Integration

Explains how to set up OpenL Studio and OpenL Rule Services as an
integrated environment.

- Troubleshooting Notes
- Frequently Asked Questions

Provide useful information related to OpenL Tablets installation.

Audience

This guide is mainly targeted at business users and rule experts who define, view, and manage their business
rules and rule projects via OpenL Studio. Developers can also use this document to learn how to install and set
up OpenL Rule Services.

Basic knowledge of Java and Apache Tomcat is required to use this guide effectively.

Related Information

The following table lists the sources of information related to contents of this guide:

Title Description

OpenL Studio User
Guide

Describes OpenL Studio, a web application for managing OpenL Tablets
projects through web browser.

OpenL Tablets
Reference Guide

Provides overview of OpenL Tablets technology, as well as its basic concepts
and principles.

https://openl-
tablets.org/

OpenL Tablets open source project website.

Typographic Conventions

The following styles and conventions are used in this guide:

Convention Description

2 / 47

file:///c%3A/work/docs/OpenLdocs/docs/documentation/guides/webstudio_user_guide.md
https://openldocs.readthedocs.io/en/latest/documentation/guides/reference_guide/
https://openl-tablets.org/

Convention Description

Bold

Represents user interface items such as check boxes, command buttons, dialog boxes,
drop-down list values, field names, menu commands,
menus, option buttons, perspectives, tabs, tooltip labels, tree elements, views, and
windows.
Represents keys, such as F9 or CTRL+A.
Represents a term the first time it is defined.

Courier
Represents file and directory names, code, system messages, and command-line
commands.

Courier
Bold

Represents emphasized text in code.

Select File >
Save As

Represents a command to perform, such as opening the File menu and selecting Save As.

Italic Represents any information to be entered in a field. Represents documentation titles.

< > Represents placeholder values to be substituted with user specific values.

Hyperlink
Represents a hyperlink.
Clicking a hyperlink displays the information topic or external source.

Before You Begin
This section lists the system requirements for OpenL Tablets software and introduces OpenL Studio instance
properties. The following topics are included:

System Requirements for OpenL Tablets Software
Common Information about OpenL Studio Instances

System Requirements for OpenL Tablets Software

The following table covers system requirements for installing and running OpenL Tablets software:

Software Requirements description

Operating
systems

One of the following:
• Microsoft Windows 7+ x86/64
• Ubuntu 12.x
• Linux 3.x
Note: OpenL Tablets software can potentially run on any operating system that supports
Java Virtual Machine, for example, Mac OS.
This table lists operating systems on which the OpenL Tablets software is tested and
supported.

Browsers

One of the following:
• Microsoft Internet Explorer 11.x
• Firefox 60 ESR or later
• Chrome 73+

3 / 47

Software Requirements description

Data Bases

One of the following:
• MySQL 5.5+
• MariaDB 10.2+
• MS SQL Server 2008+
• Oracle 11g +
• PostgreSQL 9.5+

Other
software

Java v8/11/12 x86/64
Apache Tomcat 8.5, 9
WebSphere Application Server 8.5
JBoss EAP 7.3

Hardware requirements: RAM 4 GB minimum. 6 GB is recommended. 1 GHz or faster 32-bit (x86) or 64-bit
(x64) processor.

User rights requirements: Administrative permissions are required to install the software under Microsoft
Windows or UNIX system.

Note: It is highly recommended to avoid using spaces and special characters in paths.

Common Information about OpenL Studio Instances

This section provides general information about OpenL Studio home directory structure and resources shared
among multiple OpenL Studio instances. The following topics are included:

OpenLStudio Home Directory Configuration
Starting OpenL Studio in the Cluster Mode
Sharing webstudio.properties
Sharing Project History
Sharing Project Index

OpenL Studio Home Directory Configuration

When OpenL Studio is run for the first time, by default ${user.home}/.openl is used as the openl.home or
OPENL_HOME directory where the application is deployed.

This folder contents depends on configuration. Example of its contents is as follows:

locks

repositories which is a settings folder

user-workspace that contains .locks folder and folders by users with .history folders

webstudio.properties file

cache

repositories that includes deploy-config and design folders

4 / 47

In case of multiple OpenL Studio instances, a shared file storage can be defined. The openl.home.shared
folder must be defined in the application.properties file before launching OpenL Studio for the first time.

An example of the openl.home.shared folder contents is as follows:

locks

repositories which is a settings folder

user-workspace that contains the .locks folder and folders by users with .history folders

webstudio.properties file

An example of the openl.home folder contents is as follows:

cache

repositories that includes deploy-config and design folders and by default can be set to one folder

users-db, only for a local h2 database

This option is not available if OpenL Studio is installed using the installation wizard. In this case,
openl.home.shared is set equal to openl.home and it cannot be modified in the installation wizard.

Starting OpenL Studio in the Cluster Mode

To start OpenL Studio in the cluster mode, the openl.home.shared or OPENL_HOME_SHARED property must
be defined properly. In the cluster mode, the same file storage can be used for multiple OpenL Studio
instances.

5 / 47

Multiple OpenL Studio instances sharing the same drive

Sharing webstudio.properties

webstudio.properties can be shared among multiple instances of OpenL Studio. If the
openl.home.shared path is added to application.properties before starting OpenL Studio, and it differs
from the openl.home path, a separate folder is created for storing webstudio.properties file and
administrative settings can be shared among several instances of OpenL Studio that have one
openl.home.shared path.

webstudio.properties contents can be modified by OpenL Studio when saving settings.

Sharing Project History

Project history can be shared among multiple instances of OpenL Studio.

It is stored in user workspace, in the openl.home.shared folder if set up so before launching OpenL Studio.
Thus, users can view project history from different OpenL Studio instances.

Sharing Project Index

Project index can be shared among multiple instances of OpenL Studio to support work with the Git non-flat
structure repository from different OpenL Studio instances. The openl-projects.yaml file that contains a list

6 / 47

of projects and their paths is now stored in repositories\settings\design of the openl.home.shared
folder, or openl.home if the shared folder is not configured.

Install OpenL Studio under Apache Tomcat
This section describes how to set up the environment for working with OpenL Tablets software and deploy
OpenL Studio under Apache Tomcat and provides information about settings required for proper functioning
of the application.

Perform the following steps:

Installing JDK
Installing Apache Tomcat
Deploying OpenL Studio
Configuring External User Database
Setting Up OpenL Studio with Installation Wizard
Integration with External Identify Providers
OpenL Studio Customization

Installing JDK

To install JDK, perform the following steps:

1. Download JDK.

Options are as follows:

Download OpenJDK 11 available at https://openjdk.java.net/projects/jdk/11/.
Download jdk-8u231 or later from
http://www.oracle.com/technetwork/java/javase/downloads/index.html to the target directory.

Further in the document, this catalog is referred to as <JAVA_HOME>.

Note: It is highly recommended to avoid installing Java in the default Program Files directory because it
can cause problems due to space characters in the path to the folder.

For more information on the installation, see http://www.oracle.com/technetwork/java/javase/index-
137561.html.

2. Install JDK according to the instructions.
Now the environment variable JAVA_HOME must be set to the pathname of the directory where JDK is
installed.

1. For MS Windows, set the environment variable JAVA_HOME as follows:
2. To open the System Properties window, press <Windows> + <Pause> or right click the My

Computer icon and in the pop-up menu, select Properties.
3. In the Advanced tab, click Environment Variables.
4. In the System variables area, click New.
5. In the Variable name field, enter JAVA_HOME.
6. In the Variable value field, enter the path to the directory where JDK is installed, for example,
C:\Java\jdk1.8.0_231.

7 / 47

https://openjdk.java.net/projects/jdk/11/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/index-137561.html

7. Click OK to complete.

3. For Unix/Linux environments, assuming the target directory is /usr/lib/jvm/jdk1.8.0_231, to set up
the environment variable JAVA_HOME for a single user, proceed as follows:

9. Log in to the account and open .bash_profile:nano ~/.bash_profile.

10. Add the following line

export JAVA_HOME=/usr/lib/jvm/jdk1.8.0_231.

11. Add or correct the system PATH as follows:

export PATH=$PATH:$JAVA_HOME/bin

12. To save, press CTRL+O and then press CTRL+X to exit.

4. For Unix/Linux environments, assuming the target directory is /usr/lib/jvm/jdk1.8.0_231, to set up
the environment variable JAVA_HOME for all users, proceed as follows:

14. Log in as root and open the nano /etc/profile profile.

15. Add the following line:

export JAVA_HOME=/usr/lib/jvm/jdk1.8.0_231.

16. Add or correct the system PATH as follows:

export PATH=$PATH:$JAVA_HOME/bin.

Installing Apache Tomcat

Apache Tomcat can be installed from a ZIP file or using Windows Service Installer. The following topics are
included in this section:

Installing Apache Tomcat on Windows
Installing Apache Tomcat on UNIX / Linux Machine

Installing Apache Tomcat on Windows

This section describes how to install Apache Tomcat on Windows and includes the following topics:

Installing Apache Tomcat from Zip File
Installing Apache Tomcat Using Windows Service Installer

Installing Apache Tomcat from Zip File

To install Apache Tomcat 9.0.x, proceed as follows:

1. Open Apache Tomcat home page at http://tomcat.apache.org/index.html.

2. In the left-hand Download menu, click the latest available Tomcat version.

8 / 47

http://tomcat.apache.org/index.html

3. Locate the Binary Distributions area and in the Core list, click on the ZIP file corresponding to the
required Windows version.

4. Save the ZIP file in a temporary directory.

5. Extract the downloaded ZIP file into the target folder on the computer.

This folder is referred to as <TOMCAT_HOME> further in this document.

6. For Tomcat web server 9.0, to configure JVM options, open the TOMCAT_HOME/conf/server.xml file
and add the URIEncoding="UTF-8" attribute for all <Connector> elements.

For example:

<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000"
redirectPort="8443" URIEncoding="UTF-8"/>

Installing Apache Tomcat Using Windows Service Installer

This section describes how to install Apache Tomcat using Windows Service Installer.

Note: It is not recommended to select this type of installation if planning to edit rule tables in Excel files from
OpenL Studio as described in OpenL Studio User Guide > Modifying Tables section. This type of installation
requires additional setup. To solve this issue, contact your OpenL Tablets administrator.

Note: For OpenL Tablets administrator: to enable editing rule tables in Excel files from OpenL Studio, enable
the Allow service to interact with desktop Tomcat service option using MMC or from the command line.

Proceed as follows:

1. Navigate to the Apache Tomcat site at http://tomcat.apache.org/index.html and in the left-hand
Download menu, click the latest available Tomcat version.

2. Locate the Binary Distributions area and in the Core list, click the 32-bit/64-bit Windows Service
Installer link.

Save the apache-tomcat exe file in a temporary folder.

3. Run the exe file and follow the instructions of the installation wizard.

4. Click Next.

5. In the License Agreement window, click I Agree.

6. In the Choose Components dialog, leave the default Normal type of installation.

Experienced Tomcat users can select another installation type in the drop-down list.

7. In the Configuration dialog, proceed with default values.

8. In the next window, review the folder where Tomcat will be installed, the Destination Folder.

9 / 47

https://openldocs.readthedocs.io/en/latest/documentation/guides/webstudio_user_guide/#modifying-tables
http://tomcat.apache.org/index.html
https://tomcat.apache.org/download-90.cgi

This folder is referred to as <TOMCAT_HOME> further in this document.

9. Click Install to start the installation.

10. Click Finish to complete.

As a result, Apache Tomcat is installed and started on the user’s computer. In the Notification Area

located next to the clock, the icon appears. Tomcat is managed by using this icon or from the Start
menu.

11. To configure JVM options for Tomcat, in the Notification area, right click the Apache Tomcat icon and
select Configure; or click Start > All Programs > Apache Tomcat 9.0 > Configure Tomcat.

The Apache Tomcat Properties dialog appears.

12. Click the Java tab and in the Java Options text box, add the following lines:

-Xms512m
-Xmx2000m
-XX: +UseConcMarkSweepGC
-XX:PermSize=128m
-XX:MaxPermSize=512m

Note: Every option must be manually entered in a separate row.

13. Click Apply and then click OK.

14. To restart Tomcat, in Notification Area, right click the Tomcat icon and select Stop service.

The Tomcat icon changes to .

15. Select Start Service.

Alternatively, Tomcat can be restarted from the General tab in the Apache Tomcat Properties window
which appears after selecting Start > All Programs > Apache Tomcat 9.0 > Configure Tomcat.

From this point, OpenL Studio can be run as described in Deploying OpenL Studio.

Installing Apache Tomcat on UNIX / Linux Machine

This section describes how to install Apache Tomcat on the UNIX or Linux machine and includes the following
topics:

Installing Apache Tomcat from Repository
Installing Apache Tomcat from ZIP File
Configuring JVM Options for Tomcat on UNIX / Linux Machine

Installing Apache Tomcat from Repository

This section describes how to install Apache Tomcat from repository as a service on Ubuntu 12.x.

10 / 47

Note: All commands must be entered into a terminal window using an account with sudo privileges.

Proceed as follows:

1. Open a terminal window and enter the following:

sudo apt-get install tomcat7

2. Start Tomcat with the next command:

sudo /etc/init.d/tomcat7 start

All necessary folders must be located in /var/lib/tomcat7.

3. To ensure that Tomcat works properly, open the browser and enter http://localhost:8080.

If all is correct, Apache Tomcat displays the welcome page with a message resembling the following:

If you're seeing this, you've successfully installed Tomcat. Congratulations!

If the 404 error appears, try to restart Tomcat as follows:

sudo /etc/init.d/tomcat7 restart

Alternatively, stop Tomcat by entering the following command in command line and then start it as
described previously:

sudo /etc/init.d/tomcat7 stop

Installing Apache Tomcat from ZIP File

This section describes how to install Apache Tomcat on Ubuntu 12.04 and Centos 6.3. The instructions are
valid for other Linux distributions with small changes.

Proceed as follows:

1. Download the appropriate Tomcat archive file, ZIP or tar.gz archive, from its official website
http://tomcat.apache.org/download-90.cgi to the required user folder.

In this example, Tomcat 9.0.39 is downloaded to the /home/myuser folder.

2. Open a terminal window and change directory to the folder containing the Tomcat archive.

3. Extract the archive by entering the following command in the terminal, modifying the Tomcat version as
required:

tar -zxvf apache-tomcat-9.0.39.tar.gz

11 / 47

http://tomcat.apache.org/download-90.cgi

The apache-tomcat-9.0.39 folder appears. For example:

/home/myuser/apache-tomcat-9.0.39

4. Change directory to the tomcat/bin:

cd apache-tomcat-9.0.39/bin

5. Make sure all *.sh files are executable, that is, they have r in all positions to the left of the file name,
for example, -rwxr-xr-x.

For that, in terminal, enter the following:

ls –la

The following information is displayed:

OpenL Tablets package is added

6. If some sh files are not executable, enter the following command:

chmod +x ./*.sh

7. Run the sturtup.sh file as follows:

sh ./startup.sh

12 / 47

8. In the browser, enter the following URL:

http://localhost:8080

If the installation is completed successfully, the Apache Tomcat welcome screen appears. The next thing
to be done is to configure JVM options for Tomcat.

Configuring JVM Options for Tomcat on UNIX / Linux Machine

To configure JVM options for Tomcat on a UNIX / Linux machine, proceed as follows:

1. For UNIX, create TOMCAT_HOME/start.cmd file and type the following:

export JAVA_OPTS="$JAVA_OPTS -Xms512m -Xmx2000m -XX:+ UseConcMarkSweepGC -
XX:PermSize=128m -XX:MaxPermSize=512m"

2. Locate the TOMCAT_HOME/conf/server.xml file and add the URIEncoding="UTF-8" attribute for all
<Connector> elements.

For example:

<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000"
redirectPort="8443" URIEncoding="UTF-8"/>

3. From this point, deploy OpenL Studio as described in Deploying OpenL Studio.

Deploying OpenL Studio

This section describes how to deploy and run OpenL Studio under Tomcat.

The following topics are included:

Deploying OpenL Studio on a Windows Machine
Deploying OpenL Studio on a Linux Machine and Mac

Deploying OpenL Studio on a Windows Machine

This section describes how to deploy and run OpenL Studio under Tomcat on a Windows machine.

Proceed as follows:

1. Go to the https://openl-tablets.org/downloads page.

2. Click the appropriate OpenL Studio WAR link.

3. Save the file in a temporary folder and then copy the OpenL Studio WAR file.

For example, openl-tablets-webstudio-X.X.X.war to the <TOMCAT_HOME>\webapps folder.

4. Run Tomcat as follows:

If Tomcat is installed from the ZIP file, in TOMCAT_HOME\bin, click the startup.bat file.
If Tomcat is installed using Windows Service Installer, restart Tomcat as described in Installing
Apache Tomcat Using Windows Service Installer.

13 / 47

http://localhost:8080/
https://openl-tablets.org/downloads

Tomcat unpacks the WAR file into the <TOMCAT_HOME>\webapps\<war file name> folder. For
example, for 5.9.4 version the target folder can be <TOMCAT_HOME>\webapps\openl-tablets-
webstudio-5.9.4. For convenience, the folder can be renamed as needed but remember that this
name is used to launch OpenL Studio under Tomcat.

From this point on, run OpenL Studio with default settings or make additional customizations by
changing the user mode and configuring an external user database as described in OpenL Rule Services
Usage and Customization Guide.

5. To run OpenL Studio, in the browser, enter the following URL:

http://localhost:8080/<WAR file name>

That is, for this example, the URL is http://localhost:8080/openl-tablets-webstudio-5.9.4.

OpenL Studio is opened in the browser on the Welcome to Installation Wizard page. The wizard will
guide through the setup process as described in Setting Up OpenL Studio with Installation Wizard.
When setup is complete, use OpenL Studio to create new projects or download existing ones.

6. After a new release of the OpenL Studio is installed, click CTRL+F5 or clear cookies and cash manually
to reload the page in the browser.

Deploying OpenL Studio on a Linux Machine and Mac

To install OpenL Studio under Linux and Mac OS, perform the following steps:

1. Create the <OPENL_HOME> folder where the application will be deployed as follows:

sudo mkdir /<OPENL_HOME>

2. Change access rights for this folder by entering the following command in the command line:

sudo chmod 775 -R /<OPENL_HOME>

3. Change the owner for this folder:

sudo chown tomcat7:tomcat7 /<OPENL_HOME>

4. Download OpenL Studio WAR file from https://github.com/openl-tablets/openl-tablets/releases/ to a
temporary folder.

5. Copy the downloaded WAR file to the Tomcat webapps folder:

cp /home/myuser/Downloads/<openl-tablets-webstudio-
xxxx.war>/home/myuser/<TOMCAT_HOME>/webapps/webstudio.war

14 / 47

https://openldocs.readthedocs.io/en/latest/documentation/guides/rule_services_usage_and_customization_guide/
https://github.com/openl-tablets/openl-tablets/releases/

6. To stop Tomcat, run the following command from /home/myuser/<TOMCAT_HOME>/bin :

sh shutdown.sh

7. Start Tomcat from the same folder as follows:

sh startup.sh

8. In the browser, enter http://localhost:8080/webstudio.

If deployment is completed without errors, the OpenL Studio Installation Wizard described in the next
step is opened in the browser.

If encountering any problems, for more information, see the following log files:
home/myuser/<TOMCAT_HOME>/logs/catalina.out and
home/myuser//<TOMCAT_HOME>/logs/webstudio.log

Configuring External User Database

This step is only required if a user is planning to work in multi-user application modes such as Multi-user,
Active Directory, SSO: CAS, SSO: SAML, or SSO:OAuth2. For more information, see Setting Up OpenL Studio
with Installation Wizard and use an external database such as MySQL for managing users in OpenL Studio.

By default, OpenL Studio can run using an internal user database based on the H2 database engine. It is a
good idea to use the internal user database for demonstration purposes because it is provided by default and
requires no additional setup. But in this case, all user management changes will be lost after server restart.

In a production environment, it is strongly recommended to use an external database.

Note: For more information on supported platforms, see https://openl-tablets.org/.

The following topics are included:

Adding Drivers and Installing and Configuring the Database
Configuring MySQL Database as External User Storage
Configuring MariaDB Database as External User Storage
Configuring Oracle Database as External User Storage

Adding Drivers and Installing and Configuring the Database

Before configuration, perform the following steps:

1. Add the appropriate driver library for a database in OpenL Studio to \WEB-INF\lib\.

Alternatively, locate required libraries directly in \<TOMCAT_HOME>\lib with other Tomcat libraries.

15 / 47

https://openl-tablets.org/

Database DriverDatabase Driver

MySQL mysql-connector-java-5.1.31.jar

MariaDB mariadb-java-client-2.0.1.jar

Oracle ojdbc6.jar

MS SQL mssql-jdbc-7.2.2.jre8.jar

PostgreSQL postgresql-9.3-1100.jdbc4.jar

For more information on URL value according to the database type, see the URL value according to
the database type table in Setting Up OpenL Studio with Installation Wizard.

2. Install the database, defining login and password and creating a new schema or service.

Ensure all database settings are completed.

3. Start OpenL Studio and in the third step, select a Multi-user, Active Directory, or SSO mode.

4. Define database URL, username, and password.

Creating a connection to the Oracle database in the installation wizard

5. Click Finish to close the wizard when the installation is complete.

6. Log in with credentials of an administrative user defined in the third step of the installation wizard, in
the Configure initial users section.

Note that even after configuring the database as user storage, a default user is available for login. The
default user can manage user settings in OpenL Studio, for example, create a user or add privileges to a
user. All user management activities can be performed via the OpenL Studio UI, in the Admin > User
Management section.

16 / 47

Managing users in the User Management section of OpenL Studio

Right after applying changes in OpenL Studio, the updates are applied to the database. A user can log
in and work under a newly created account in OpenL Studio.

Note: During installation, several tables are created in the database. If the same tables exist in the
database from the previous usage, a conflict occurs. To avoid this situation, the following tables must
be removed: - ACCESSCONTROLENTRY - GROUP2GROUP - OPENLUSER - schema_version -
USER2GROUP - USERGROUP - HIBERNATE_SEQUENCE table that has SEQUENCE_OWNER=OPENL -
OPENL_EXTERNAL_GROUPS - OPENL_TAG_TYPES - OPENL_TAGS - OPENL_PROJECTS -
OPENL_PROJECT_TAGS - OPENL_TAG_TEMPLATES

Configuring MySQL Database as External User Storage

This section explains how to set up a MySQL database. Proceed as follows:

1. Go to http://dev.mysql.com/downloads/mysql/.

17 / 47

http://dev.mysql.com/downloads/mysql/

2. Select the appropriate MSI Installer for system configuration and click Download.

For example, Windows (x86, 32-bit), MSI Installer may be needed. It is recommended to use ZIP
Archive version since it is intended for advanced users.

3. In the next window, register or log in to the MySQL site.

This step can be skipped, and users can proceed to No thanks, just start my download! link.

4. In the next window, select Save File and save the .msi file in a target folder.

5. Navigate to the folder containing the .msi file and double click the file to start the installation process.

The MYSQL Server Setup Wizard Welcome window appears.

6. Follow the wizard steps leaving the default values and clicking Next to proceed.

7. Click Finish to close the wizard when installation is complete.

Note: It is recommended to configure the database server to use the UTF-
8 character set.

When MySQL is successfully installed on the user’s computer, an empty database for OpenL Studio in
MySQL must be created and permissions to modify this database granted to the user from which the
OpenL Studio will work with this database.

8. To open MySQL Command Line Client, select Start > All Programs > MySQL > MySQL Server 5.5 >
MySQL Command Line Client and enter the following commands:

CREATE USER openl_user IDENTIFIED BY 'openl_password';

CREATE DATABASE openl CHARACTER SET utf8;

GRANT ALL PRIVILEGES ON openl.* TO openl_user;

Configuring MariaDB Database as External User Storage

This section explains how to set up an MariaDB database. Proceed as follows:

1. Go to https://downloads.mariadb.org.

2. Select the appropriate version and click Download.

3. Select the appropriate MSI Installer for system configuration and click Download.

4. In the next window, select Save File and save the .msi file in a target folder.

5. Navigate to the folder containing the .msi file and double click the file to start the installation process.

The MariaDB Setup Wizard Welcome window appears.

6. Follow the wizard steps leaving the default values and clicking Next to proceed.

18 / 47

https://downloads.mariadb.org/

7. Define password for a root user.

8. Create a database.

Setting properties for the MariaDB database

9. Click Finish to close the wizard when the installation is complete.

10. Start HeidiSQL application.

11. Click New to create a session.

12. Select the Prompt for credentials check box and define a database port.

19 / 47

Creating a connection to the MariaDB database

13. Click Open and save the changes.

Configuring Oracle Database as External User Storage

This section explains how to set up an Oracle database. Proceed as follows:

1. Go to http://www.oracle.com/technetwork/database/enterprise-edition/downloads/index.html.

2. After registration, select the appropriate version and system configuration, and click Download.

3. Unzip 2 archives in one folder and click the exe file.

4. Configure the database and define a username and password.

These values will be used further for configuration.

5. To improve work with database, download Oracle SQL Developer at
http://www.oracle.com/technetwork/developer-tools/sql-developer/overview/index.html.

In this section, as an example, Oracle SQL Developer 3.2.2 is used.

6. Start Oracle Workbench and create a connection or select an existing database connection.

20 / 47

http://www.oracle.com/technetwork/database/enterprise-edition/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/sql-developer/overview/index.html

Creating a connection to the Oracle database

7. Enter username and password values defined when installing the database.

Setting Up OpenL Studio with Installation Wizard

This topic describes the steps that must be taken after the first run of OpenL Studio under Tomcat. Accept the
default options provided by the wizard by clicking Next to move to the next step or change the options as
required and click Next to proceed.

Proceed as follows:

1. In the Welcome to OpenL Studio Installation Wizard window, click Start.

2. In the next window, specify a working directory for OpenL Tablets.

By default, the following directory is displayed:

${user.home}/.openl

This folder is referred to as <OPENL_HOME> in the documentation. It is highly recommended not to use
the system drive for that.

3. Click Next to proceed.

4. Specify deployment and design repositories:

Type Description

Database
(JDBC)

The repository is located in a database installed either local or remote.
The Repository URL field displays URL for access to the database.

21 / 47

Type Description

Database
(JNDI)

The repository is located in a database installed either locally or remotely.
The Repository URL field displays URL for accessing the database.
Configuration settings are located in configuration files of the web server application.

AWS S3

The repository is located in Amazon Simple Storage Service (AWS S3).
A “bucket” is a logical unit of storage in AWS S3 and is globally unique.
Choose a region for storage to reduce latency, costs etc. An Access key and a Secret
key are needed to access storage.
If empty, the system retrieves it from one of the known locations as described in
AWS Documentation. Best Practices for Managing AWS Access Keys.
The Listener period is the interval in which to check repository changes, in seconds.

Git

The Git repository is a version control system.
The Git repository can be configured as local or remote.
The URL field displays URL for the remotely located Git repository or file path to the
repository stored locally.
The Local path identifies the folder where a Git repository local copy is stored.
For more information on connection settings, see OpenL Studio User Guide.

If deploy configuration must be stored in a separate repository, not in Design repository, the Use
Design Repository check box must be cleared and required parameter values must be provided.

The following table explains URL values according to the database type:

Database URL value

MySQL,
MariaDB

jdbc:mysql://[host][:port]/[schema]

Oracle jdbc:oracle:thin:@//[host][:port]/service

MS SQL
jdbc:sqlserver://[serverName[\instanceName][:port]]
[;property=value[;property=value]]

PostgreSQL jdbc:postgresql://[host][:port]/[schema]

For more details about how to configure the repository of a specific type, please refer to the
corresponding section below:

Configuring OpenL Studio via JDBC Connection
Configuring OpenL Studio via JNDI Connection
Configuring OpenL Studio via Amazon Simple Storage Service
Connecting to OpenL Studio via Proxy

For more information on repository security, see OpenL Studio User Guide > Managing Repository
Setting.

5. Click Next.

6. Select a user mode as described in the following table:

22 / 47

http://docs.aws.amazon.com/general/latest/gr/aws-access-keys-best-practices.html
https://openldocs.readthedocs.io/en/latest/documentation/guides/webstudio_user_guide/

Mode Description

Demo

This is a multi-user mode with the list of users predefined in the default
database.
The database does not require additional setup.
All changes in the database will be lost after the application restart.

Single-user
Only the user currently logged on to the computer can work with the OpenL
Studio.
For more information on the single user mode, see OpenL Studio User Guide.

Multi-user
(recommended)

Multiple users can run OpenL Studio with their unique names.
OpenL Studio is used to authenticate and manage user credentials/permissions
with External database.

Active Directory
Multiple users can run OpenL Studio using their unique user names.
Active Directory will be used to authenticate and manage user credentials.

SSO: CAS
Multiple users can run OpenL Studio using their unique user names.
CAS (Central Authentication Service) server will be used to authenticate and
manage user credentials.

SSO: SAML
Multiple users can run OpenL Studio using their unique user names.
SAML (Security Assertion Markup Language) supporting Identity Provider server
will be used to authenticate and manage user credentials.

SSO:OAuth2

Multiple users can run OpenL Studio using their unique user names.
User projects will be located in the './openl-demo/user-workspace/USERNAME'
folder.
OAuth2 supporting the identity provider server will be used to authenticate and
manage user credentials.

For Active Directory, SSO: CAS, SSO: SAML, and SSO:OAuth2, user modes proceed as described in
Integration with External Identity Providers.

7. If Multi-user, Active Directory, SSO: CAS, SSO: SAML, or SSO:OAuth2 mode is selected, in the
Configure database area that appears, modify the database parameters as follows:

Parameter Description

Database
URL

Enter the URL for the selected database.

Login /
Password

Username and password specified for the database as defined in Configuring
External User Database.

8. Click Finish to complete setup.

As a result, for the Demo, Multi-user, Active Directory, SSO: CAS, SSO: SAML, and SSO:OAuth2
modes, the login screen appears for entering user’s credentials to start working with OpenL Studio. If
the openl.home registry variable is defined, upon OpenL Studio update, after replacing the war file, re-
running installation wizard is not required as the fact of configuration is recorded in the system registry.

23 / 47

https://openldocs.readthedocs.io/en/latest/documentation/guides/webstudio_user_guide/

However, if there are multiple instances of OpenL Studio installed on the same computer, OpenL Studio
must be run via system properties.

For a list of users predefined in the Demo application mode, see OpenL Studio User Guide > Managing
Users.

Configuring OpenL Studio via JDBC Connection

Configure design and deployment repositories settings on the second step of OpenL Studio installation
wizard as follows:

1. Select JDBC as the type of the connection database (JDBC).
2. Provide URL and authentication data.

Setting up a JDBC connection using the installation wizard

Configuring OpenL Studio via JNDI Connection

To configure the OpenL Studio via JNDI connection, perform the following steps:

Configuring Resources for JNDI Context
Configuring Settings in OpenL Studio

Configuring Resources for JNDI Context

Resource settings must be configured before deploying the application. Proceed as follows:

1. Open the \conf\context.xml file in Apache Tomcat and add the Resource tag as described in the
following examples.

For the Oracle database, an example is as follows:

24 / 47

https://openldocs.readthedocs.io/en/latest/documentation/guides/webstudio_user_guide/#managing-users

<Resource name=”jdbc/oracleJNDI” auth=”Container”
 type=”javax.sql.DataSource” username=”user” password=”password”
 driverClassName=”oracle.jdbc.OracleDriver”
 url=”jdbc:oracle:thin:@localhost:1521:orcl”
 maxActive=”8”
 />

For the MySQL database, an example is as follows:

<Resource name=”jdbc/mysqlJNDI” auth=”Container” type=”javax.sql.DataSource”
 maxActive=”100” maxIdle=”30” maxWait=”10000”
 username=”javauser” password=”javadude”
driverClassName=”com.mysql.jdbc.Driver”
 url=”jdbc:mysql://localhost:3306/javatest”
 />

For the MS SQL database, an example is as follows:

<Resource name=”jdbc/mssqlJNDI” auth=”Container”
 type=”javax.sql.DataSource” username=”wally” password=”wally”
 driverClassName=”com.microsoft.sqlserver.jdbc.SQLServerDriver”

url=”jdbc:sqlserver://localhost;DatabaseName=mytest;SelectMethod=cursor;”
 maxActive=”8”
 />
For the PostrgeSQL database, an example is as follows:
<Resource name=”jdbc/postgres” auth=”Container”
 type=”javax.sql.DataSource” username=”postgres” password=”Password1”
 driverClassName=”org.postgresql.Driver”
 url=”jdbc:postgresql://localhost:5432/postgres”
 maxActive=”8”
 />

2. Save the context.xml file.

Configuring Settings in OpenL Studio

Configure design and deployment repositories settings on the second step of OpenL Studio installation
wizard as follows:

1. Select JNDI as the type of the connection database.

2. Enter a URL in the java:comp/env/<resource name> format.

Definition of the authentication data, that is, login and password, is not required in the installation
wizard because this information is set in context.xml file already.

25 / 47

Setting up JNDI connection with installation wizard

Configuring OpenL Studio via Amazon Simple Storage Service

Configure design and deployment repositories settings on the second step of OpenL Studio installation
wizard as follows:

1. Select AWS S3 as the type of connection.

2. Specify the following information:

Parameter Description

Bucket name Enter the name of the bucket in which your data resides.

Region name
Select the name of the AWS region in which your bucket resides.
For non-AWS S3 repositories, any value can be specified.
This value cannot be omitted as it is required by the API specification.

Access key Enter your Amazon AWS access key.

Secret key Enter your Amazon AWS secret access key.

Listener period
(sec)

The time, in seconds, to wait for the Amazon server to respond.

Endpoint
Leave empty for a standard AWS S3 connection.
To connect to the non-standard AWS S3 alternative repository, specify the
endpoint.

Connecting to OpenL Studio via Proxy

The following diagram illustrates how to connect to OpenL Studio via proxy.

26 / 47

Connecting to OpenL Studio via proxy

Integration with External Identity Providers

To enhance sign in options for users, a third-party authentication can be established between organization
authentication systems and OpenL Studio. After enabling third-party authentication, users can sign into
OpenL Tablets using their organizational credentials.

The following topics are included in this section:

User Management
Configuring Authentication via Active Directory
Configuring Single Sign On via CAS
Configuring Single Sign On via SAML Server
Configuring Single Sign On via OAuth2

User Management

OpenL Studio allows selecting where user permissions are managed in the case of integration with external
identity providers. First of all, administrative users must be defined in the Configure initial users section that
appears in the third step of the installation wizard. Proceed as follows:

1. Provide at least one user to be granted administration privileges in the Administrators field.

2. Select the All authenticated users have View access check box to grant viewer privileges by default.

27 / 47

Configuring initial users

Configuring Authentication via Active Directory

This section explains how to set up authentication via Active Directory. Proceed as follows:

1. Specify Active Directory domain, URL, user filter, and group filter.

2. To verify connection to Active Directory, enter credentials of the existing Active Directory user and click
Check Connection.

Configuring authentication via Active Directory

Configuring Single Sign On via CAS

This section explains how to set up authentication via CAS.

Define the following parameters:

28 / 47

Parameter Description

OpenL Studio server URL URL for OpenL Studio.

CAS server URL URL for the selected CAS server.

Attribute for First Name
CAS attribute for the first name.
Keep it blank if the CAS server does not return this attribute.

Attribute for Second Name
CAS attribute for the second name.
Keep it blank if the CAS server does not return this attribute.

Attribute for Display Name
CAS attribute for the display name.
Keep it blank if the CAS server does not return this attribute.

Attribute for Email
CAS attribute for the email.
Keep it blank if the CAS server does not return this attribute.

Attribute for Groups
CAS attribute for groups.
Keep it blank if the CAS server does not return this attribute.

Note: Contact CAS server administrator for attribute names information.

Configuring CAS

Configuring Single Sign On via SAML Server

This section describes single sign on configuration via the SAML server and includes the following topics:

Configuring SAML via the Installation Wizard
Configuring SAML on Azure Kubernetes

Configuring SAML via the Installation Wizard

29 / 47

This section explains how to set up authentication via the SAML server using the installation wizard.

Define the following parameters:

Parameter Description

Entity ID

Entity identifier. Alternatively, its value can be set for the security.saml.entity-id
property, in the webstudio.properties file.
An administrator must add the same entity ID to the clients list on the server
which serves as an identity provider instance
before setting it up in OpenL Studio.
Adding the Entity ID parameter allows using several OpenL Studio instances on
the same server
with one Keycloak server.

SAML server metadata
URL

URL of the metadata XML file of the Identity Provider.

SAML remote server
X509 certificate

PEM Base-64 encoded string, which contains a public key for SAML IDP Server.
The begin and end tags are not required.

Attribute for
Username

SAML attribute for a username.
Keep it blank if SAML server does not return this attribute, or if default
algorithm for username retrieval must be used.

Attribute for First
Name

SAML attribute for the first name.
Keep it blank if SAML server does not return this attribute.

Attribute for Second
Name

SAML attribute for second name.
Keep it blank if SAML server does not return this attribute.

Attribute for Display
Name

SAML attribute for the display name.
Keep it blank if the SAML server does not return this attribute.

Attribute for Email
SAML attribute for the email.
Keep it blank if the SAML server does not return this attribute.

Attribute for Groups
SAML attribute for groups.
Keep it blank if the SAML server does not return this attribute.

30 / 47

Configuring SAML

Configuring SAML on Azure Kubernetes

SAML configuration on Azure Kubernetes includes the following steps:

If the OpenL Studio Docker image is deployed on Azure Kubernetes, set the parameters on the Azure
Basic SAML configuration as follows:

Parameter Description

Identifier (Entity ID)
Audience of the SAML response for IDP-initiated SSO.
Example: https://example.com/ saml2/service-provider-metadata/webstudio

31 / 47

Parameter Description

Reply URL
Destination in the SAML response for IDP-initiated SSO.
Example: https://example.com/ login/saml2/sso/webstudio

Logout URL
Called URL for the logout operation.
Example: https://example.com/ logout/saml2/slo

URLs must be accessible by Azure.

To specify the Azure metadata URL in the OpenL Studio, search for App Federation Metadata URL in
the Azure SAML Signing certificate.

Username, first name, last name, group, and other attributes can also be retrieved from App Federation
Metadata XML.

Build the image with the required JDBC driver.

OpenL Studio stores information about users and their groups in the database, so there must be a remote
database server when OpenL Studio is used in Kubernetes.

In Kubernetes, application configuration is described in the configuration map and installer must not be used.
For an example of the configuration, see Appendix B: OpenL Studio Image Configuration for SAML Under
Kubernetes.

Configuring Single Sign On via OAuth2

This section explains how to set up authentication via the OAuth2 server using the installation wizard. Define
the following parameters:

Parameter Description

Client ID

Parameter required for an identity provider to identify OpenL Studio as a separate
service provider.
For Keycloak, the value must exactly match the client ID. In Okta, it must match the
service provider entity ID.

Issuer URI
OAuth2 authorization server URL.
It is used for binding with the server to get additional settings for autoconfiguration.

Client Secret
Client secret.
It is used by the OAuth client to authenticate to the authorization server.

Scope
Scope requested by the client during the authorization request flow, such as openid,
email, or profile. https://oauth.net/2/scope/

Attribute for
Username

OAuth2 attribute for a username.
Keep it blank if OAuth2 server does not return this attribute, or if default algorithm
for username retrieval must be used.

Attribute for
First Name

OAuth2 attribute for the first name.
Keep it blank if OAuth2 server does not return this attribute.

32 / 47

https://example.com/openl/webstudio/saml/SSO
https://example.com/openl/webstudio/saml/SingleLogout

Parameter Description

Attribute for
Second Name

OAuth2 attribute for second name.
Keep it blank if OAuth2 server does not return this attribute.

Attribute for
Display Name

OAuth2 attribute for the display name.
Keep it blank if the OAuth2 server does not return this attribute.

Attribute for
Email

OAuth2 attribute for the email.
Keep it blank if the OAuth2 server does not return this attribute.

Attribute for
Groups

SA OAuth2 ML attribute for groups.
Keep it blank if the OAuth2 server does not return this attribute.

Configuring single sign on via OAuth2

An example of how to configure single sign on via OAuth2 using properties is as follows:

security.oauth2.client-id=a57bd7bd-2c22-4ef3-xxxx-xxxxxxxxxxx
security.oauth2.issuer-uri=https://login.microsoftonline.com/bebd0062-openid-
connect/v2.0
security.oauth2.client-secret=xzB8Q~XxxXx-Secret-key-XxxXxxXxXxxx

OpenL Studio Customization

This section describes additional configuration for OpenL Studio and includes the following topics:

Updating User Database Configuration
Configuring User Mode
Configuring Google Analytics

33 / 47

Configuring Private Key for Repository Security

The changes described in this section can be made in the properties file as described in OpenL Studio Home
Directory Configuration.

Updating User Database Configuration

An example of the configuration that can be used for the user database is as follows:

db.url = jdbc:oracle:thin:@localhost:1521:openltest
db.user = loginname
db.password = myPassword

Configuring User Mode

Normally, user mode in OpenL Studio is set to multi-user by using OpenL Studio Installation Wizard as
described in Setting Up OpenL Studio with Installation Wizard.

User mode can also be changed as a JVM option for Tomcat. For that, open the Apache Tomcat Properties
dialog as described in Installing Apache Tomcat Using Windows Service Installer, and in the Java Options text
box, add the following line:

-Duser.mode=multi

Note: User mode set as a Java option takes precedence over the corresponding value specified in the OpenL
Studio Installation Wizard. If both are defined, the Java option value is used.

Configuring Google Analytics

Google Analytics is a service offered by Google that generates detailed statistics about website traffic and
traffic sources. To configure Google Analytics for OpenL, open the Apache Tomcat Properties dialog as
described in Installing Apache Tomcat Using Windows Service Installer and in the Java Options text box, add
the following lines:

webstudio.analytics=number

number is a number provided by Google during registration.

Configuring Private Key for Repository Security

OpenL Studio allows connecting to secured repositories. In this case, passwords are stored in OpenL Studio
workspace. To improve passwords protection, a private key can be used.

Private key is a special secure sentence for coding and encoding repository passwords. By default, the private
key is empty. It can be set up as a JVM option for Tomcat by adding and specifying the value of the following

34 / 47

parameter:

secret.key=mySecretPhrase

The private key must be specified without spaces.

Note: The private key must be configured prior to creating any secured connections. Otherwise, all stored
passwords become invalid.

Deploy OpenL Rule Services under Apache Tomcat
This chapter is designed for rule developers who need to use business rules as separate web services.

For more information on how to configure OpenL Rule Services, see OpenL Rule Services Usage and
Customization Guide.

Before deploying OpenL Rule Services under Apache Tomcat, ensure the following tasks are performed:

The JAVA_HOME environment variable is set to the pathname of the directory where JDK is installed.
JVM options are set up as described in Installing Apache Tomcat.

The folder where Tomcat is installed is referred to as <TOMCAT_HOME>.

This section contains the following topics:

Downloading Preconfigured OpenL Rule Services
Configuring OpenL Rule Services for a Local Data Source
Configuring OpenL Rule Services for a Database Data Source
Configuring OpenL Rule Services via AWS S3 Connection
Configuring OpenL Rule Services via GIT Connection

Downloading Preconfigured OpenL Rule Services

To download the preconfigured OpenL Rule Services application in a WAR file, proceed as follows:

1. Locate https://openl-tablets.org/downloads.
2. Click the appropriate OpenL Rule Services WAR link.
3. Save the WAR file to the <TOMCAT_HOME>\webapps directory.

Configuring OpenL Rule Services for a Local Data Source

This section describes how to configure settings for a local storage with deployed projects there. The
following topics are included:

Configuring OpenL Rule Services via Local File System
Configuring OpenL Rule Services via Local ZIP Archives
Configuring OpenL Rule Services via Classpath JAR

Configuring OpenL Rule Services via Local File System

35 / 47

https://openldocs.readthedocs.io/en/latest/documentation/guides/rule_services_usage_and_customization_guide/
https://openl-tablets.org/downloads

Using a file system as a data source for user projects means that projects are stored in a local folder. This
folder represents multi deployments containing one or multiple projects for each deployment. Each
deployment must be represented as a separate folder and, at the same time, the project must also be
represented as a separate folder inside the deployment folder.

To deploy OpenL Rule Services, configure a local file system as a data source as follows:

1. Open the application.properties file.

2. Set the following properties with the following values:

production-repository.factory = repo-file
production-repository.uri = d:/datasource/

Note: For proper parsing of Java properties file, the path to the folder must be defined with a slash
(‘/’) as the folders delimiter. Back slash “\” is not allowed.

3. Save the rule project in the appropriate datasource folder.

Every rule project must be represented as a separate folder. As an example, use OpenL Tablets Tutorial
available at https://openl-tablets.org/documentation/tutorials.

4. To run Tomcat, in <TOMCAT_HOME>\bin, click the startup.bat file.

To ensure the deployment is successful, try loading the appropriate CXF page with web services.
An example is http://localhost:8080/openl-tablets-ws-X.X.X.

Users can also pack their rule projects in a jar file and use this file as a data source as described in OpenL
Rule Services Usage and Customization Guide > Classpath JAR.

Configuring OpenL Rule Services via Local ZIP Archives

Using a local zip archive as a data source for user projects means that zipped projects are stored in a local
folder. This folder represents rule project or deployment as a separate zip archive:

Each dependent rule projects must be represented as a deployment zip archive and each project must
be in a separate folder inside the deployment archive.
Each independent rule project must be represented as a separate zip archive.

To set up local zip archives for deployment to OpenL Rule Services, proceed as follows:

1. Open the application.properties file.

2. Set the following properties with the following values:

production-repository.factory = repo-zip
production-repository.uri = d:/datasource

3. Save the zipped rule projects in the appropriate datasource folder.

36 / 47

https://openl-tablets.org/documentation/tutorials
http://localhost:8080/openl-tablets-ws-X.X.X
https://openldocs.readthedocs.io/en/latest/documentation/guides/rule_services_usage_and_customization_guide/#classpath-jar

Every rule project must be represented as a separate archive. As an example, use OpenL Tablets tutorial
available at https://openl-tablets.org/documentation/tutorials.

It is also possible to configure separate zip archives from different locations. For that, set up the production-
repository.archives property and define the exact address to the zip archive. Use the comma “,” separator
to configure multiple archives. An example is as follows:

production-repository.archives = d:/datasource/project1.zip, c:/folder/project2.zip

Configuring OpenL Rule Services via Classpath JAR

If rule projects with the rules.xml project descriptor in the archive root or deployments with the
deployment.xml or deployment.yaml deployment descriptor in the archive root are packed into a JAR file
and placed in the classpath, these projects are deployed at the application launch. It is default configuration.

To set up a classpath JAR for deploy to OpenL Rule Services, proceed as follows:

1. Open the application.properties file.

2. Set the following properties with the following values:

 production-repository.factory = repo-jar

3. Put the JAR file with the project to \<TOMCAT_HOME>\webapps\<rule services file name>\WEB-
INF\lib.

Alternatively, zip archives with deployments or rule projects can be saved to \<TOMCAT_HOME>\webapps\
<rule services file name>\WEB-INF\classes\openl.

Configuring OpenL Rule Services for a Database Data Source

This section describes how to configure settings to connect to a database for storing deployed projects there.
Such configuration requires that the appropriate database exists and is launched. The following topics are
included:

Configuring OpenL Rule Services via JDBC Connection
Configuring OpenL Rule Services via JNDI Connection
Configuring OpenL Rule Services via AWS S3 Connection
Configuring OpenL Rule Services via GIT Connection
Configuring OpenL Rule Services via Azure Blob Connection

Before configuration, add the appropriate driver library for a database in OpenL Rule Services to \WEB-
INF\lib\.Alternatively, locate required libraries directly in \<TOMCAT_HOME>\lib with other Tomcat libraries.
Install the database, defining a login and password and creating a new schema or service.

For more information on drivers, see the Driver name for appropriate databases table in Adding Drivers and
Installing and Configuring the Database.

Configuring OpenL Rule Services via JDBC Connection

37 / 47

https://openl-tablets.org/documentation/tutorials

To set up JDBC connection settings for OpenL Rule Services, proceed as follows:

1. Open the application.properties file.

2. Set the following properties with the following values:

production-repository.factory = repo-jdbc
production-repository.uri = jdbc:mysql://localhost/deployment-repository

3. Set the URL value for production-repository.uri according to the appropriate database as
described in the URL value according to the database type table in Setting Up OpenL Studio with
Installation Wizard.

4. Set the login production-repository.login and password production-repository.password
for connection to the database defined while installing the database.

The password must be encoded via the Base64 encoding schema when secret.key is also defined.

Configuring OpenL Rule Services via JNDI Connection

This section describes how to configure JNDI connection when OpenL Rule Services is started under Apache
Tomcat. Before configuration, ensure that resources are set up in the context.xml file as described in
Configuring Resources for JNDI Context.

To configure OpenL Rule Services via JNDI connection, proceed as follows:

1. Open the application.properties file.

2. Set the following properties with the following values:

production-repository.factory = repo-jndi
production-repository.uri = java:comp/env/jdbc/deploymentDB

3. Change the URL value for production-repository.uri according to the appropriate database as
described in the URL value according to the database type table in Setting Up OpenL Studio with
Installation Wizard.

Note: Login and password are not required for definition inside the application.properties file
while configuring JNDI settings.

Configuring OpenL Rule Services via AWS S3 Connection

This section describes how to configure an AWS S3 connection when OpenL Rule Services is started under
Apache Tomcat.

To configure OpenL Rule Services via an AWS S3 connection, add the following properties to the
application.properties file:

38 / 47

production-repository.factory = repo-aws-s3
production-repository.bucket-name = yourBucketName
production-repository.region-name = yourS3Region
production-repository.access-key = yourAccessKey
production-repository.secret-key = yourSecretKey

Configuring OpenL Rule Services via GIT Connection

To configure OpenL Rule Services via a GIT connection, add the following properties to the
application.properties file:

production-repository.factory = repo-git
production-repository.uri = https://github.com/<your-name>/<your-repo>.git
production-repository.login = your-login
production-repository.password = your-password

Configuring OpenL Rule Services via Azure Blob Connection

To configure OpenL Rule Services via the Azure Blob connection using SAS, add the following properties to
the application.properties file:

production-repository.factory=repo-azure-blob
production-repository.uri=https://myStorage.blob.core.windows.net/container/?
sv=2015-07-08

Install OpenL Studio and OpenL Rule Services on JBoss Application Server
This section explains how to install OpenL Studio and OpenL Rule Services on JBoss Application Server in a
standalone mode.

The following topics are included:

Deploying OpenL tudio on JBoss Application Server
Deploying OpenL Rule Services on JBoss Application Server
Setting Up a JDBC Connection
Setting Up a JNDI Connection

Deploying OpenL Studio on JBoss Application Server

To deploy OpenL Studio on JBoss Application Server, proceed as follows:

1. Rename the OpenL Studio war file to webstudio.war.
2. Copy webstudio.war to the <JBoss home directory>\standalone\deployments directory.
3. If the auto-deploy-zipped attribute is set to true in the standalone.xml file, manually create an

empty file webstudio.war.dodeploy.

39 / 47

4. Run the <JBoss home directory>\bin\standalone.bat file.
5. Verify that the webstudio.war.deployed marker is generated.
6. To run OpenL Studio, in a browser, enter http://localhost:8080/webstudio/.
7. The Welcome to OpenL Studio Installation Wizard window.
8. Set up the application as required.

Deploying OpenL Rule Services on JBoss Application Server

To deploy OpenL Rule Services on JBoss Application Server, proceed as follows:

1. Rename the OpenL Rule Services file to webservice.war.
2. Copy the webservice.war file to the <JBoss home directory>\standalone\deployments

directory.
3. Run the <JBoss home directory>\bin\standalone.bat file.
4. Verify that the webservice.war.deployed marker is generated.
5. To run OpenL Rule Services, in a browser, enter http://localhost:8080/webservice/.

Setting Up a JDBC Connection

To set up a JDBC connection for OpenL Studio, proceed as follows:

1. Download a required JDBC driver.

2. Run < JBoss home directory >\bin\standalone.bat.

3. Run JBoss command line client <JBoss home directory>\bin\jboss-cli.bat.

4. In Jboss-cli:, connect to the server using the connect command.

5. In Jboss-cli:, add a module using the following command:

module add --name=<module name> --resources=<path to the driver> --
dependencies=javax.api,javax.transaction.api

An example of the MySQL driver copied to the <JBoss home directory>\bin directory is as follows:

module add --name=org.mysql --resources=mysql-connector-java-8.0.11.jar --
dependencies=javax.api,javax.transaction.api

6. To prepare *.war files for deployment, in the META-INF\jboss-deployment-structure.xml file, add
the following structure:

<dependencies>

<module name="<module_name>" export="true" />

</dependencies>

7. For webservice.war, in the application.properties file, specify a connection to the database as
follows:

production-repository.factory = repo-jdbc

40 / 47

production-repository.uri = jdbc:mysql://localhost/deployment-repository

8. Ensure that the application.properties file is “visible” at the JBoss launch location.

For example, if the application.properties file is located in JBoss home directory, JBoss must be
run from this directory via the bin\standalone.bat command.

9. Configure a JDBC connection for OpenL Studio as described in Configuring OpenL Studio via JDBC
Connection.

Setting Up a JNDI Connection

To set up a JNDI connection settings for OpenL Studio, proceed as follows:

1. Copy a database driver to the <JBoss home directory>\ standalone\deployments\ directory.

2. Run the <JBoss home directory>\bin\standalone.bat file.

3. In a browser, enter http://localhost:8080/.

4. Click Administration console.

5. Click the Configuration link.

6. Select Subsystems > Datasources > Non-XA.

7. Click Add.

Configuring a JNDI connection

8. In the Create Datasource window, select a data source and click Next.

9. Enter the data source name and JNDI name and click Next.

10. Switch to the Detected Driver tab.

41 / 47

JDBC driver collection

11. Select a JDBC driver and click Next.

12. Specify database connection settings and click Next.

13. To test the JDBC connection, click Test Connection.

14. Click Next and then click Finish.

15. For webservice.war, in the application.properties file, specify the connection to a database as
follows:

production-repository.factory = repo-jndi

production-repository.uri = <JNDI Name>

16. Configure a JNDI connection for OpenL Studio as described in Configuring Settings in OpenL Studio.

OpenL Studio and Rule Services Integration
This section describes how to set up OpenL Studio and OpenL Rule Services integration and enable backward
compatibility and includes the following topics:

42 / 47

Deploying Rules to the Production Server
Integrating OpenL Studio and OpenL Rule Services via Database Repository

Deploying Rules to the Production Server

After integration any changes can be made in user’s rule in OpenL Studio, and then the project must be saved
and redeployed. These changes immediately affect the rule represented as web service. During development,
rules are stored in the file system of the development server. When development is finished, rules can be
deployed to the production server as follows:

1. OpenL Studio sends the rules project to the database repository, using the JDBC driver for connection,
in case of integration via database repository.

2. The rules are saved on the production server.

3. OpenL Rule Services detects a new version of the deployed rules and starts using it.

The following diagram illustrates the OpenL Studio and OpenL Rule Services integration:

OpenL Studio and OpenL Rule Services deployment

Integrating OpenL Studio and OpenL Rule Services via Database Repository

This section describes an alternative way of how to set up an integrated environment that enables work with
business rules from OpenL Studio and launch these rules as OpenL Rule Services. To set up OpenL Studio and
OpenL Rule Services integration using the database as storage for deployment repository, proceed as follows:

1. Install OpenL Studio and OpenL Rule Services on the same application server.
2. Connect OpenL Studio to the database to store deployed projects as described in Setting Up OpenL

Studio with Installation Wizard.
3. Configure OpenL Rule Services for a database data source as described in Configuring OpenL Rule

Services for a Database Data Source.

Troubleshooting

43 / 47

If OpenL Studio is deployed under Tomcat in the Unix/Linux environment, consider the following
troubleshooting recommendations:

1. Before starting Tomcat under Linux, make sure that no Java processes are running:

sudo ps -A | grep j

If found, the process name and number are displayed.

2. If any Java process is running, stop it as follows:

kill -9 <process number>

3. Make sure that port 8080 is available as follows:

sudo netstart –an | grep 8080

4. Run Tomcat under Linux as follows:

<TOMCAT_HOME>/bin/startup.sh

5. If the command not found error appears, mark the .sh file as an executable script as follows:

chmod +x startup.sh

6. If the Permission denied or The BASEDIR environment variable is not defined correctly error is
displayed, make all .sh files in the bin folder executable as follows:

chmod 777 *.sh

7. Verify that all .sh files in the bin folder are executable as follows:

ls –la

8. Run Tomcat as follows:

<TOMCAT_HOME>/bin/startup.sh

Frequently Asked Questions
This section provides the most common questions and answers related to the OpenL Tablets installation
procedure. For more information on working with Java, Tomcat, and other third party software, see the
corresponding sites of the software manufacturers.

Question Answer

44 / 47

Question Answer

1
How can I check if Java is installed on
my PC?

Proceed as follows:
Open Start > Control Panel.
Perform either of the following:
• For Windows XP, double click Add or Remove
Programs.
• For Windows 7/Vista, click Programs > Programs and
Features.
Look through the list for Java(TM)… or Java(TM)
Update… items.
If any is present, Java is installed on your PC.

2
During Java installation, the page for
Java registration appears.
Do I have to register Java?

No, it is optional. You can close the registration page.

3
How can I check which version of Java
is installed on my PC?

Open the Verify Java Version page and click the Verify
Java Version button.
In a few seconds a new page appears where you will find
the message like the following one:
Your Java version: Version 6 Update 26.

4

How can I see the error message in the
Tomcat
console that appears when I start
Tomcat?
The error screen disappears too
quickly.

Proceed as follows:
Click Start > Run.
Locate the <TOMCAT_HOME>\bin folder.
Select catalina.bat and enter run in the command line.

Appendix A: Official Docker Images for OpenL Tablets
OpenL Tablets supports Docker containers. The following table provides links to the Docker images for OpenL
Tablets:

OpenL Tablet resource Reference

OpenL Rule Services https://hub.docker.com/r/openltablets/ws/

OpenL Studio https://hub.docker.com/r/openltablets/webstudio/

OpenL Tablets demo https://hub.docker.com/r/openltablets/demo/

Appendix B: OpenL Studio Image Configuration for SAML Under
Kubernetes

apiVersion: apps/v1
kind: StatefulSet
metadata:

45 / 47

http://java.com/en/download/installed.jsp
https://hub.docker.com/r/openltablets/ws/
https://hub.docker.com/r/openltablets/webstudio/
https://hub.docker.com/r/openltablets/demo/

 name: webstudio
spec:
 replicas: 1
 selector:
 matchLabels:
 app: webstudio
 serviceName: webstudio
 template:
 metadata:
 labels:
 app: webstudio
 spec:
 containers:
 - name: webstudio
 image: openltablets/webstudio:latest
 resources:
 limits:
 memory: "32768Mi"
 requests:
 memory: "1024Mi"
 ports:
 - containerPort: 8080
 readinessProbe:
 tcpSocket:
 port: 8080
 initialDelaySeconds: 30
 periodSeconds: 60
 livenessProbe:
 tcpSocket:
 port: 8080
 initialDelaySeconds: 60
 periodSeconds: 120
 env:
 - name: WEBSTUDIO_CONFIGURED
 value: "true"
 - name: DB_URL
 value: "jdbc:postgresql://dbserver:5432/studio_db"
 - name: DB_USER
 value: "pgadmin@studio"
 - name: DB_PASSWORD
 value: "Pa$$w0rd"
 - name: USER_MODE
 value: "saml"
 - name: SECURITY_SAML_ENTITY-ID
 value: "webstudio"
 - name: SECURITY_SAML_SAML-SERVER-METADATA-URL
 value: "https://saml-idp-server/path/to/metadata"
 - name: SECURITY_ADMINISTRATORS
 value: "mylogin@example.com"
 - name: SECURITY_SAML_SERVER-CERTIFICATE
 value: "BASE64 encoded public key (optional)"
 - name: SECURITY_SAML_ATTRIBUTE_FIRST-NAME
 value:
"http://schemas.xmlsoap.org/ws/2005/05/identity/claims/givenname"

46 / 47

 - name: SECURITY_SAML_ATTRIBUTE_LAST-NAME
 value:
"http://schemas.xmlsoap.org/ws/2005/05/identity/claims/surname"
 - name: SECURITY_SAML_ATTRIBUTE_DISPLAY-NAME
 value: "http://schemas.microsoft.com/identity/claims/displayname"
 - name: SECURITY_SAML_ATTRIBUTE_EMAIL
 value:
"http://schemas.xmlsoap.org/ws/2005/05/identity/claims/emailaddress"
 - name: SECURITY_SAML_ATTRIBUTE_GROUPS
 value:
"http://schemas.microsoft.com/ws/2008/06/identity/claims/role"
 - name: USER_MODE
 value: "saml"
 imagePullSecrets:
 - name: regcreds

Appendix C: CORS Filter Support Enablement in
OpenL Studio
Cross-Origin Resource Sharing (CORS) is a specification which is a standard mechanism that enables cross-
origin requests. For more information on how to enable CORS filter support in OpenL Studio, see OpenL Rule
Services Usage and Customization Guide > CORS Filter Support.

Release 5.27
OpenL Tablets Documentation is licensed under the Creative Commons Attribution 3.0
United States License.

47 / 47

https://openldocs.readthedocs.io/en/latest/documentation/guides/rule_services_usage_and_customization_guide/#cors-filter-support

